Energy Optimization of Bioethanol Production via Hydrolysis of Switchgrass

نویسندگان

  • Mariano Martín
  • Ignacio E. Grossmann
چکیده

In this work, we propose the optimal flowsheet for the production of bioethanol from switchgrass, via hydrolysis. A superstructure embedding a number of alternatives is proposed. Two technologies are considered for switchgrass pretreatment, dilute acid and ammonia fibre explosion (AFEX) so that the structure of the grass is broken down. Next, enzymatic hydrolysis follows any of the pretreaments to obtain fermentable sugars, mainly xylose and glucose. Ethanol is obtained by fermentation of the sugars. In order to obtain fuel quality ethanol, water must be removed from the water-ethanol mixture. A number of dehydration technologies is considered including rectification, adsorption in corn grits, molecular sieves and pervaporation. The problem is formulated as an MINLP. The superstructure is optimized by decomposing the MINLP for each of the pretreaments. Then, multieffect columns and heat integration are used to reduce the energy consumption and cooling needs. Finally, an economic evaluation is performed. The optimal flowsheet consists of using dilute acid hydrolysis followed by molecular sieves as dehydration technology, which requires less energy and cooling and yielding a promising production price of 0.8 $/gal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Switchgrass-based Bioethanol Supply Chain Network Design Model under Auto-Regressive Moving Average Demand

Switchgrass is known as one of the best second-generation lignocellulosic biomasses for bioethanol production. Designing efficient switchgrass-based bioethanol supply chain (SBSC) is an essential requirement for commercializing the bioethanol production from switchgrass. This paper presents a mixed integer linear programming (MILP) model to design SBSC in which bioethanol demand is under auto-r...

متن کامل

Switchgrass for bioethanol and other value-added applications: a review.

Switchgrass is a promising feedstock for value-added applications due to its high productivity, potentially low requirements for agricultural inputs and positive environmental impacts. The objective of this paper is to review published research on the conversion of switchgrass into bioethanol and other value-added products. Environmental benefits associated with switchgrass include the potentia...

متن کامل

Surfactant-Aided Phosphoric Acid Pretreatment to Enable Efficient Bioethanol Production from Glycyrrhiza Glabra Residue

Glycyrrhiza glabra residue (GGR) was efficiently subjected to concentrated phosphoric acid (PA) pretreatment with/without surfactant assistance, and promising results were obtained following separate enzymatic hydrolysis and fermentation (SHF) of the biomass. Pretreatment was carried out using 85 % PA either at 50 or 85 °C with 12.5 % solid loading for 30 min. In parallel experiments, ...

متن کامل

Energy optimization of bioethanol production via gasification of switchgrass

In this paper, we address the conceptual design of the bioethanol process from switchgrass via gasification. A superstructure is postulated for optimizing energy use that embeds direct or indirect gasification, followed by steam reforming or partial oxidation. Next, the gas composition is adjusted with membrane-PSA or water gas shift. Membrane separation, absorption with ethanol-amines and PSA ...

متن کامل

Microwave-based alkali pretreatment of switchgrass and coastal bermudagrass for bioethanol production.

Switchgrass and coastal bermudagrass are promising lignocellulosic feedstocks for bioethanol production. However, pretreatment of lignocelluloses is required to improve production of fermentable sugars from enzymatic hydrolysis. Microwave-based alkali pretreatment of switchgrass and coastal bermudagrass was investigated in this study. Pretreatments were carried out by immersing the biomass in d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011